

Assumptions used in calculating multi-bunch growth rates and determining stability

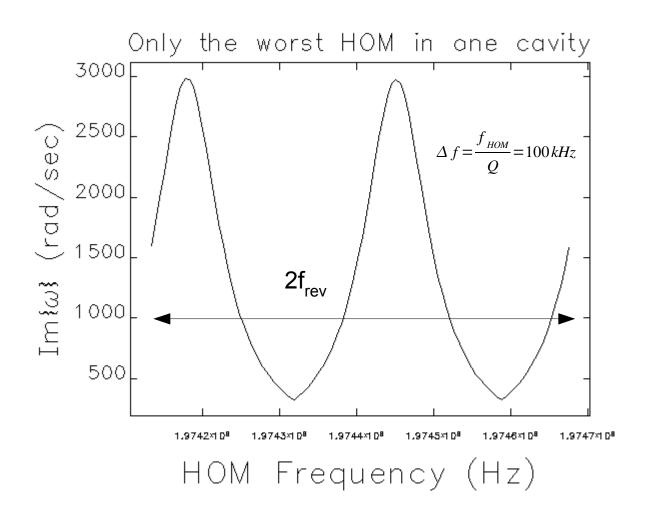
Louis Emery presented by Kathy Harkay SPX study group July 27th ASD

Random list of assumptions/points (before logical presentation)

- Ways to calculate/estimate a growth rate
 - Full tracking, modal analysis for arbitrary bunch pattern, or simple formula for equidistant bunches
- Which damping rate to use
 - Synchrotron radiation or coherent damping. Beneficial in transverse plane only
- How growth/damping from HOM occurs
- Give example of frequency dependence of growth rate
- HOM frequency is of primary importance
- Shunt impedance definition convention
 - "linac" for input power calculation, "circuit" for instability calculation
- Assumption of LOM and HOM data
- What is the accuracy of Q value prediction
 - With dampers final Q is uncertain, but is very low

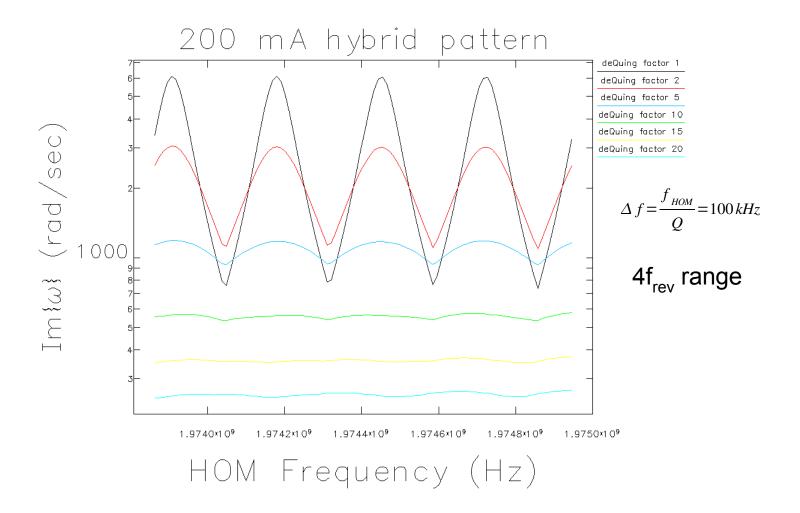
Random list of assumptions/points (before logical presentation)

- Model of frequency randomness
 - Need to invent a reasonable one before a model of such can be determined with real cavities
- Model of frequency staggering
 - Staggering avoids overlap of HOMs of different cavities. Less beneficial when Qs are low.
- Bunch patterns
 - Repeat all calculations for each bunch pattern type
- Characteristics consequences of very low Q (less than 1000)
 - Single HOM can affect many possible multi-bunch modes
- How to display Monte Carlo data
 - Histogram, cumulative distribution for comparison between cases


Present APS HOM and Multi-Bunch Stability Situation*

- Long range wake-fields or impedances:
 - Several monopole and dipole HOM resonators from the 16 single-cell
 352-MHz cavities. Staggered HOM resonant frequencies.
 - Strong resistive-wall impedance from Al chambers (longitudinal and transverse)
- Long range wake-fields cause multi-bunch instabilities in general

Present APS HOM and Multi-Bunch Stability Situation*


- Stability of multi-bunch modes
 - Longitudinal from rf cavity monopole HOM cured with temperature adjustments and, in the case of one group of four cavities, HOM dampers. Stable up to I = 245 mA.
 - Transverse multi-bunch instability from resistive wall cured with headtail damping of individual bunches from positive x- and y-chromaticity
 - Rf cavity HOM dipole resonators are expected to be strongest in H-plane because of β_x/β_y ratio but coupled bunch instabilities due to them are not observed (lucky for us)

Longitudinal plane growth rate for worst Rs

Vary deQing of one mode

Calculation Method¹

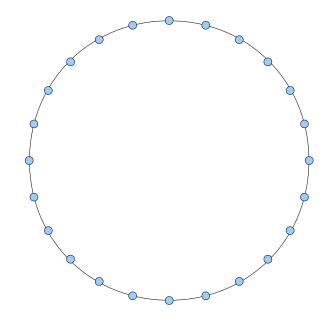
- Randomized all f_{HOM} by adding a number between - f_s and f_s .
 Use 200 samples.
- Staggering of frequencies applied to all HOM in cavities is possible; presently have none for deflecting cavities
- Use clinchor¹ based on normal mode analysis for general bunch pattern² for calculating worst growth rates for each case of HOM
 - Plot histogram of growth rates for each Q value
- If growth rates < damping rate, then beam is stable

² "Transverse Coupled-Bunch Instabilities in Damping Rings of High-Energy Linear Colliders," K. Thompson and R. Ruth, PRD, 43, 1991

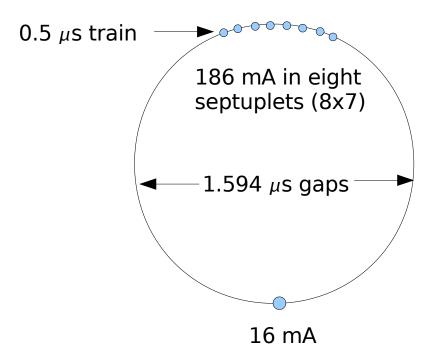
¹ "Required Cavity HOM deQuing Calculated from Probability Estimated of Coupled Bunch Instabilities in the ASP Ring," L. Emery, PAC 1995

Beam Parameters

Operating total current	202 mA
Energy	7 Gev
Revolution frequency	271.55 kHz
Synchrotron frequency	2.1 kHz
Momentum compaction	2.8x10 ⁻⁴
Cavity β_{x}	22 m
Cavity β_y	7.5 m
RMS bunch length for 2 mA	37 ps
Chromaticity	>6


Damping rates

Planes	Synchrotron radiation	Coherent		
Longitudinal	208 s ⁻¹	208 s ⁻¹		
Horizontal	104 s ⁻¹	>600 s ⁻¹		
Vertical	104 s ⁻¹	>600 s ⁻¹		


Bunch Patterns

Symmetric 202 mA in 24 bunches

153 ns spacing

Hybrid, i.e.
Single bunch plus a bunch train
202 mA in Hybrid: 1+ 8x7
Hybrid usually has higher growth rates

Growth Rate Formula for Symmetric Pattern

- Applicable for one single HOM ($\omega_r = 2\pi f_r$) at a time
- One particular beam mode will have the largest growth rate
- If the longitudinal HOM frequency is equal to a positive sideband of the beam spectrum $f_r = pNf_0 + mf_0 + f_s$ then the growth rate is maximum and is given by

$$G_{s} = \frac{\alpha_{c} I_{total}}{2(E/e)\nu_{s}} (R_{s} f_{r}) \exp(-\omega_{r}^{2} \sigma_{s}^{2})$$
Bunch form factor

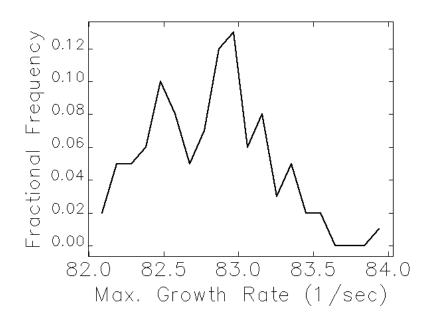
If the dipole HOM frequency is equal to a negative sideband of the beam spectrum for plan $f_r = pNf_0 + mf_0 - f_u$ where u=x,y then the growth rate is maximum and is given by

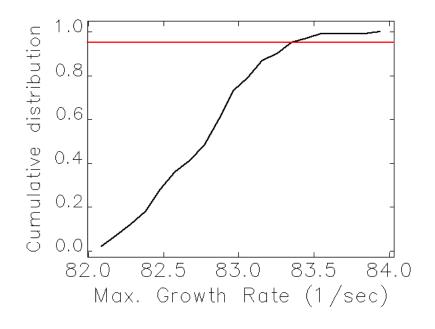
$$G_{u} = \frac{f_{0}I_{total}}{2(E/e)}(\beta_{u}R_{u}) \exp(-\omega_{r}^{2}\sigma_{s}^{2})$$

Allowable Limit on Shunt Impedances for Single HOM

- Applicable only for single HOM at a time and symmetric bunches
 - Hybrid bunch pattern may be some factor worse
- Use as initial guide for damping requirements
- Table includes bunch form factor
- H-plane is worse because of ring optics functions
- Longitudinal limit assumes f_r is around 2 GHz

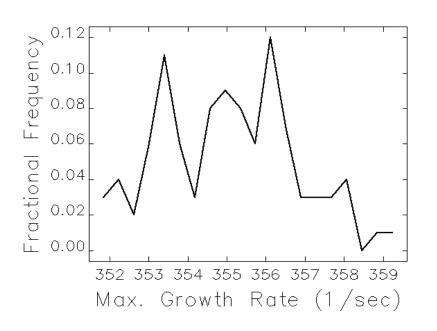
Plane	Shunt Impedance	
Longitudinal	$0.5~{ m M}\Omega ext{-GHz}~{ m or}$	
	$0.25~ extsf{M}\Omega$	
Horizontal	1.5 MOhm/m	
Vertical	4.5 MOhm/m	

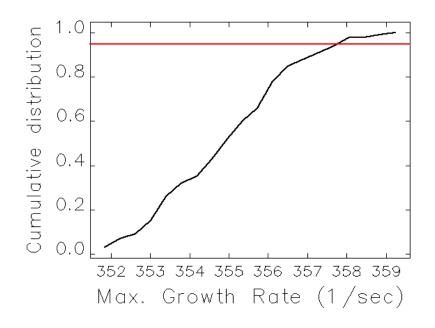

Shunt impedance definitions:


$$R_{s} = \frac{|V|^{2}}{2P_{c}}$$
 $R_{t} = \frac{R_{s}(r)}{kr^{2}}$

Example H-plane HOMs from SC cavity with dampers

Frequency Hz		RoverQWald Ohm/m\$a2\$n	RoverQ Ohm/m	ShuntImpedance Ohm/m
2.96e+09 3.28e+09	440 850	18.80 3.29	583 113	2.57e+05 9.61e+04
		"linac" convention	"circuit" convention	1
		$\left(\frac{R_{t}}{Q}\right)' = \frac{R_{s}(r)/Q}{(kr)^{2}}$	$\frac{R_{t}}{Q} = \frac{R_{s}(r)/Q}{kr^{2}}$	<u>)</u>
		$R_{s}(r) = \frac{\left V\right ^{2}}{P_{c}}$	$R_{s}(r) = \frac{\left V\right ^{2}}{2P_{c}}$	


Results for H-plane



Q's as supplied by Waldschmidt

Results for H-plane - increase Q a bit

All Q's set to 1000 (about 2x for worst mode)
Growth rate increased by 4.5!

More exploration of parameters required, i.e. staggering

Stability Result

- Q's of longitudinal and transverse planes are very low (20-200)
- Transverse plane is stable with only synchrotron radiation

Plane		Damping Rate		
		Synchrotron Radiation	Coherent	Comment
Longitudinal		208 s ⁻¹	Not applicable	
Horizontal	85 s ⁻¹	104 s ⁻¹	>600 s ⁻¹	Stable
Vertical		104 s ⁻¹	>600 s ⁻¹	Probably stable

